پیش¬بینی جریان روزانه با استفاده از شبکه¬های عصبی مصنوعی و عصبی- موجکی (مطالعه موردی: رودخانه باراندوزچای)
Authors
Abstract:
پیشبینی دقیق جریان در رودخانهها یکی از مهمترین ارکان در مدیریت منابع آبهای سطحی به ویژه جهت اتخاذ تدابیر مناسب در مواقع سیلاب و بروز خشکسالیها است. به دلیل اهمیت پیشبینی جریان رودخانه، در این تحقیق جریان روزانه رودخانهی باراندوزچای در دو ایستگاه بیبکران و دیزج طی یک دورهی آماری 20 ساله با استفاده از مدل عصبی- موجکی (WNN) که تلفیق آنالیز موجک و شبکه عصبی مصنوعی (ANN) میباشد، پیشبینی گردید. سپس نتایج حاصله از مدل WNN با مدل ANN مقایسه گردید. دادههای مربوط به سالهای 1384-1369 به منظور آموزش شبکهها و دادههای سالهای 1388-1385 نیز جهت صحتسنجی شبکهها استفاده گردیدند. عملکرد این دو مدل توسط شاخصهای آماری ضریب همبستگی (r)، ریشه مربع میانگین خطا (RMSE) و میانگین قدر مطلق خطا (MAE) ارزیابی گردید. نتایج این پژوهش نشان داد که مدل WNN با ضرایب همبستگی 972/0 و 976/0 که به ترتیب مربوط به ایستگاههای بیبکران و دیزج میباشند، توانایی بیشتری در پیشبینی جریان روزانه رودخانه نسبت به مدل ANN دارد. بنابراین، نتایج حاکی از کارایی مناسب و دقت بالای مدل عصبی- موجکی در مقایسه با شبکه عصبی مصنوعی در پیشبینی جریان رودخانه است. i-font_�iy`[��Wew Roman";mso-fareast-font-family:Calibri; mso-hansi-font-family:"Times New Roman";mso-ansi-language:EN-US;mso-fareast-language: EN-US;mso-bidi-language:FA'> به میزان 074/0 واحد ( 87/160 درصد) نسبت به شاهد شد. بطور کلی نتایج دلالت بر این دارد که جهت اصلاح خاکهای شور-سدیمی، بهتر است ابتدا ازPAM استفاده شود، چون از نظر بهبود هدایت هیدرولیکی و تسریع آبشویی تأثیر مهم میگذارد، بهره گیری از پومیس یا کمپوست در اولویت بعدی قرار میگیرد.
similar resources
تولید مصنوعی جریان رودخانه با استفاده از شبکههای عصبی مصنوعی
در این مطالعه قابلیت مدلهای شبکه عصبی مصنوعی در زمینه تولید مصنوعی جریان ارزیابی میشود. مدلی که برای تولید مصنوعی بکار رفته با ترکیب مدل شبکه عصبی و یک مؤلفه تصادفی با توزیع نرمال ایجاد شده است. در توسعه مدل از شبکه عصبی چند لایه تغذیه پیشرفتی با الگوریتم آموزشی انتشار برگشتی خطا استفاده شده است. بر این اساس مدل، سریهای بلند مدت و تا 300 سال جریان مصنوعی روزانه در رودخانه خرسان را تنها با ...
full textکاربرد شبکههای بیزین و برنامهریزی ژنتیک در پیشبینی جریان روزانه رودخانه (مطالعه موردی: رودخانه باراندوزچای)
برآورد دقیق آبدهی رودخانه ها یکی از موارد مهم در پیش بینی خشکسالی، سیلاب، طراحی سازههای آبی، بهره برداری از مخازن سدها و کنترل رسوب می باشد.روشهای متعددی همچون مدلهای سریزمانی، شبکههای عصبی مصنوعی، منطق فازی و برنامهریزی ژنتیک برای پیشبینی جریان رودخانه به کار میرود. در مطالعه حاضر به منظور پیشبینی جریان رودخانه باراندوزچای از دو روش برنامهریزی ژنتیک و شبکههای بیزین استفاده شد....
full textپیشبینی جریان روزانه رودخانه اهرچای با استفاده از مدل قوانین M5 و مقایسه آن با شبکههای عصبی مصنوعی المانی (ENN)
برآورد صحیح آبدهی رودخانهها یکی از موارد مهم در پیشبینی خشکسالی، سیلاب، طراحی سازههای آبی، بهرهبرداری از مخازن سدها و کنترل رسوب میباشد. از اینرو متخصصان علوم مهندسی آب جهت برآورد دقیق جریان، از روشهای هوشمند مانند شبکههای عصبی مصنوعی و روشهای مختلف دادهکاوی بهره گرفتهاند. در این مطالعه، جهت پیشبینی جریان روزانه رودخانه اهرچای، از روشهای شبکه عصبی مصنوعی المانی (ENN) و قوانین درخت...
full textپیشبینی تقاضای روزانه آب شهری با استفاده از شبکههای عصبی مصنوعی، مطالعه موردی: شهر تهران
پیشبینی تقاضای آب در سیستمهای آبرسانی و توزیع آب، با توجه بهکمک شایانی که میتواند به مدیران این مجموعهها برای مدیریت بحران (حداقل و حداکثر مصرف) داشته باشد، از اهمیت بالایی برخودار است. پیچیدگی و تأثیر عوامل و پارامترهای مختلف بر میزان تقاضای آب در این سیستمها، سبب گردیده است که روشهای تحلیلی و ریاضی کارایی لازم را در این زمینه نداشته باشند. در این مقاله روش شبکههای عصبی مصنوعی برای برآو...
full textپیشبینی جریان روزانه رودخانه نوران چای با استفاده از مدل ترکیبی شبکههای عصبی مصنوعی- تجزیه مؤلفههای اصلی
پیشبینی دقیق جریان روزانه، نقش بهسزایی در مدیریت کارآمد منابع آب ایفا میکند. به این منظور در این تحقیق سعی شده است که جهت مدلسازی هرچه دقیقتر فرآیند پیشبینی جریان روزانه رودخانه نورانچای واقع در حوضه آتشگاه، از شبکههای عصبی مصنوعی (ANN) استفاده گردد. همچنین بهمنظور افزایش کارآیی ANN از تجزیه مؤلفههای اصلی (PCA) جهت پیشپردازش دادههای ورودی استفاده گردیده و درنهایت دادههای خروجی حا...
full textMy Resources
Journal title
volume 23 issue 3
pages 93- 103
publication date 2013-10-23
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023